¹H NMR Studies on Cationic Motions in Solid tert-Butylammonium Hexachlorostannate (IV)

Hiroyuki Ishida, Tatsuo Higashiyama, and Naomi Hayama Department of Chemistry, College of General Education, Okayama University, Okayama 700, Japan

Ryuichi Ikeda

Department of Chemistry, University of Tsukuba, Tsukuba 305, Japan

Z. Naturforsch. 47 a, 1087-1090 (1992); received July 8, 1992

The temperature dependences of the $^1\mathrm{H}$ spin-lattice relaxation time (T_1) and the second moment (M_2) of $^1\mathrm{H}$ NMR absorptions were measured for anhydrous tert-butylammonium hexachlorostannate(IV) and its partially deuterated analogs $[(\mathrm{CD_3})_3\mathrm{CNH_3}]_2\mathrm{SnCl_6}$ and $[(\mathrm{CH_3})_3\mathrm{CND_3}]_2\mathrm{SnCl_6}$. Three kinds of cationic motions were revealed: the reorientations of the $\mathrm{CH_3}$ group about the $\mathrm{C-N}$ bond, and the tert-butyl group about the $\mathrm{C-N}$ bond. Their motional parameters were determined. Among the three motions, the $\mathrm{NH_3^+}$ motion occurs at the lowest temperature with quite a small activation energy $(9.9-10.0~\mathrm{kJ}~\mathrm{mol}^{-1})$.

1. Introduction

Recently we have studied the ¹H NMR spin-lattice relaxation time (T_1) and the second moment (M_2) of ¹H NMR absorption of tert-butylammonium hexachloro- and hexabromotellurate(IV) in the temperature range of 77-405 K [1]. In these crystals, tertbutylammonium ions were found to perform composite motions consisting of C₃ reorientations of CH₃ and NH₃ groups about C-C and C-N bonds, respectively, and the C'₃ reorientation of the tert-butyl group about the C-N bond. The activation energies obtained for these motions are quite small compared with those in halides [2-4], implying that the cations ar loosely bound in the crystals. Among the three motions, the NH₃ motion occurs at the lowest temperature with activation energies (7.9-10.1 kJ mol⁻¹) smaller than those for CH_3 groups (7.9–16.7 kJ mol⁻¹), indicating that the NH₃ group rotates more easily than the CH₃ groups in these complexes. The X-ray structural analysis of [(CH₃)₃CNH₃]₂TeCl₆ recently performed [5] shows no particular distortion of the cation nor unusual contact between ions such as to make the NH₃ group more movable than the CH₃ groups. Therefore, the above result may suggest that,

Reprint requests to Prof. Dr. H. Ishida, Department of Chemistry, College of General Education, Okayama University, Okayama 700, Japan.

in case the cations are quite loosely bound in the crystal lattice, the NH₃ group can perform less hindered rotation than the CH₃ groups.

[(CH₃)₃CNH₃]₂SnCl₆, abbreviated hereafter (t-BA)₂ SnCl₆, belongs to the [(CH₃)₃CNH₃]₂MX₆ (M = quadrivalent metal, X=halogen) group, and the cations in this complex are expected to move freely like in [(CH₃)₃CNH₃]₂TeCl₆. The present investigation of (t-BA)₂SnCl₆ and its partially deuterated analogs by using continuous and pulsed ¹H NMR techniques has been undertaken to elucidate the cationic motions in the crystal.

2. Experimental

The second moment (M_2) of ¹H NMR absorption was determined with a JEOL JNM-MW-40S spectrometer. ¹H NMR T_1 was measured at 32 MHz using a pulsed spectrometer [6]; the $180^{\circ}-t-90^{\circ}$ pulse sequence was employed. Differential thermal analysis (DTA) was performed with a home-made apparatus similar to that reported previously [7]. Thermogravimetric analysis (TGA) was carried out using an apparatus from Rigaku Denki Co.

tert-Butylammonium hexachlorostannate(IV) was prepared by mixing tert-butylammonium chloride with a stoichiometric amount of SnCl₄, both dissolved in concentrated hydrochloric acid. The result-

0932-0784 / 92 / 1000-1087 \$ 01.30/0. - Please order a reprint rather than making your own copy.

Dieses Werk wurde im Jahr 2013 vom Verlag Zeitschrift für Naturforschung in Zusammenarbeit mit der Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. digitalisiert und unter folgender Lizenz veröffentlicht: Creative Commons Namensnennung-Keine Bearbeitung 3.0 Deutschland

This work has been digitalized and published in 2013 by Verlag Zeitschrift für Naturforschung in cooperation with the Max Planck Society for the Advancement of Science under a Creative Commons Attribution-NoDerivs 3.0 Germany License.

Zum 01.01.2015 ist eine Anpassung der Lizenzbedingungen (Entfall der Creative Commons Lizenzbedingung "Keine Bearbeitung") beabsichtigt, um eine Nachnutzung auch im Rahmen zukünftiger wissenschaftlicher Nutzungsformen zu ermöglichen.

On 01.01.2015 it is planned to change the License Conditions (the removal of the Creative Commons License condition "no derivative works"). This is to allow reuse in the area of future scientific usage.

ing colorless crystals were recrystallized from concentrated hydrochloric acid. The obtained crystals effloresce easily in dry air, its color becoming white and opaque. TGA showed that the compound contains five molecules of crystal water. The dehydrated samples were obtained by drying the hydrated crystals under vacuum (ca. 1×10^{-3} Torr) for 12 h at ca. 60 °C. Calculated for [(CH₃)₃CNH₃]₂SnCl₆; C, 20.01; H, 5.00; N, 5.84%. Found: C, 20.00; H, 4.95; N, 5.83%.

[(CD₃)₃CNH₃]₂SnCl₆ ((t-Bd₉A)₂SnCl₆) was synthesized in a similar manner by use of (CD₃)₃CNH₃Cl prepared by neutralization of (CD₃)₃CNH₂ purchased from MSD Isotopes with hydrochloric acid. [(CH₃)₃CND₃]₂SnCl₆ ((t-BAd₃)₂SnCl₆) was obtained from purified [(CH₃)₃CNH₃]₂SnCl₆ by crystallizing three times from deuterated hydrochloric acid.

3. Results and Discussion

X-ray powder patterns of $(t\text{-BA})_2 \text{SnCl}_6$ taken at room temperature are very complicated and quite different from those of $(t\text{-BA})_2 \text{TeCl}_6$ [1], indicating that these complexes are not isomorphous at room temperature. DTA measurements performed in the range $100 \le T/\text{K} \le 300$ showed a heat anomaly attributable to a phase transition. The transition temperatures determined for $(t\text{-BA})_2 \text{SnCl}_6$, $(t\text{-Bd}_9 \text{A})_2 \text{SnCl}_6$, and $(t\text{-BAd}_3)_2 \text{SnCl}_6$ are 196, 189, and 195 K, respectively.

The temperature dependence of M_2 of ¹H NMR absorption is shown in Figure 1. The M_2 value of $32 \pm 1 \text{ G}^2 (1 \text{ G} = 1 \times 10^{-4} \text{ T})$ observed at 77 K is close to 28.7 G² calculated for the rigid t-BA⁺ ion reported on $(t-BA)_2$ TeCl₆ [1]. With increasing temperature, M_2 decreased rapidly and almost a constant value of 2.8 ± 0.2 G² was obtained above ca. 200 K. This value can be explained by rapid C3 reorientations of the NH₃ and three CH₃ groups as well as the C'₃ reorientation of the tert-butyl group, although the observed value is somewhat small as compared with the calculated M_2 of 4.8 G^2 [1] for the cation performing these three motions. This difference is attributable to the contribution to M_2 from large amplitude librations of the cation about its C-C and/or C-N bond axis, as pointed out previously [1, 8].

The temperature variations of ${}^{1}H$ T_{1} are shown in Figs. 2 and 3 for $(t-BA)_{2}SnCl_{6}$ and its partially deuterated analogs, respectively. No detectable changes of T_{1} were observed at the transition temperatures of these complexes determined by DTA. In the following

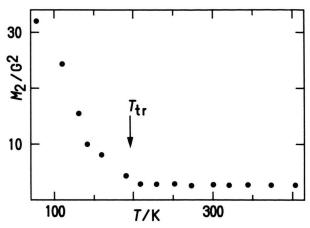


Fig. 1. Temperature dependence of the $^1\mathrm{H}$ NMR second moment M_2 observed for $[(\mathrm{CH_3})_3\mathrm{CNH_3}]_2\mathrm{SnCl_6}$. T_{tr} is the transition temperature determined by DTA.

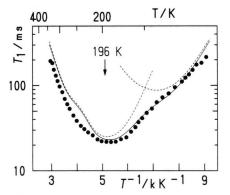


Fig. 2. Temperature dependence of the spin-lattice relaxation time T_1 observed at 32 MHz in $[(CH_3)_3CNH_3]_2SnCl_6$. The broken lines indicate the calculated T_1 curves using the motional parameters determined for $[(CD_3)_3CNH_3]_2SnCl_6$ and $[(CH_3)_3CND_3]_2SnCl_6$, respectively. The solid line denotes the resultant T_1 curve summing the two T_1 curves. 196 K in the figure is the transition temperature determined by DTA.

analysis of T_1 , thus, we assume that the cationic motions are not influenced by the phase transition.

A slightly asymmetric T_1 minimum at ca. 140 K observed for $(t-Bd_9A)_2SnCl_6$ can be attributed to the reorientation of the NH_3^+ groups, by referring to the M_2 results. Since the asymmetric shape of the T_1 minimum can be ascribed to successively overlapped T_1 minima, we can expect the presence of crystallographically nonequivalent NH_3^+ groups in the crystal.

Here we suppose for simplicity, two kinds of nonequivalent cations in the crystal. Then ${}^{1}H$ T_{1} for

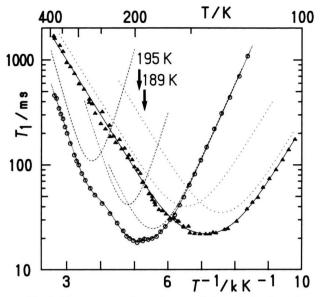


Fig. 3. Temperature dependences of the spin-lattice relaxation time T_1 observed at 32 MHz in $[(CD_3)_3CNH_3]_2SnCl_6$ (\triangle) and $[(CH_3)_3CND_3]_2SnCl_6$ (\bigcirc). Solid lines indicate the best fitted theoretical values. The dotted and broken lines are the separated T_1 curves according to (1) and (8), respectively. 189 K and 195 K in the figure are the transition temperatures determined by DTA for $[(CD_3)_3CNH_3]_2SnCl_6$ and $[(CH_3)_3CND_3]_2SnCl_6$, respectively.

(t-Bd₉A)₂SnCl₆ can be written as [9]

$$T_1^{-1} = A f(\tau^{I}) + B f(\tau^{II}),$$
 (1)

$$A + B = (9/20) \gamma^4 \hbar^2 r^{-6}, \tag{2}$$

$$f(\tau) = \tau/(1 + \omega^2 \tau^2) + 4\tau/(1 + 4\omega^2 \tau^2), \qquad (3)$$

where $\tau^{\rm I}$, $\tau^{\rm II}$, γ , r, and ω denote the correlation times of the reorientation for the two kinds of NH₃⁺ groups, the protonic gyromagnetic ratio, the inter proton distance in an NH₃⁺ group, and the resonance angular frequency, respectively. An Arrhenius-type relationship between τ^i (i = I, II) and the activation energy (E^i_a) for the motional process of the i-th NH₃⁺ group was assumed:

$$\tau^i = \tau^i_0 \exp(E^i_a/RT) \,. \tag{4}$$

Equations (1)–(4) were least-squares fitted to the observed T_1 values. The optimum values of A, B, τ_0^i , and E_a^i are shown in Table 1, and the best fitted curves are shown in Fig. 3; the agreement between the calculated and observed T_1 is quite good. Since almost the same values of A and B were obtained, the nonequivalent cations in the crystal can be classified into two groups with an abundance ratio of 1:1.

Table 1. Motional parameters of tert-butylammonium ions in partially deuterated tert-butylammonium hexachlorostannate(IV).

$E_{\rm a}/{\rm kJ~mol^{-1}}$	$\tau_0/10^{-13} \text{ s}$	$C/10^9 \mathrm{s}^{-2}$	Reorienting group
[(CD ₃) ₃ CNH ₃	l ₂ SnCl ₆		
9.9 ± 0.5	4.0 ± 1.0	4.0 ± 1.0	NH_3^+
10.0 ± 0.5	1.2 ± 0.2	3.5 ± 1.0	NH ₃
[(CH ₃) ₃ CND ₃	₂ SnCl ₆		
21.7 ± 0.7	1.7 ± 0.4	1.3 ± 0.2	tert-butyl
19.7 ± 1.0 $13.6 + 0.1$	0.4 ± 0.1 3.6 + 0.3	3.4 ± 0.5 5.7 ± 0.5	CH ₃ and
13.0 ± 0.1	3.0 ± 0.3	3.7 ± 0.3	tert-butyl

A deep T_1 minimum at ca. 190 K and a shoulder at ca. 270 K were observed for $(t-BAd_3)_2SnCl_6$, as shown in Figure 3. These are assignable to the reorientations of the CH_3 and tert-butyl groups from the M_2 results mentioned above. Since two kinds of cations have been revealed to exist in the crystal, we should consider at least four relaxation processes corresponding to the reorientations of the CH_3 and tert-butyl groups in the two different cations under the assumption that all CH_3 groups in each cation are equivalent. Then, 1H T_1 for these motions can be expressed as [2, 10, 11]

$$T_{1}^{-1} = (1/2) \left[A \left\{ f(\tau_{1}^{\text{I}}) + f(\tau_{1}^{\text{II}}) \right\} + B \left\{ f(\tau_{2}^{\text{I}}) + f(\tau_{2}^{\text{II}}) \right\} + C \left\{ f(\tau_{3}^{\text{I}}) + f(\tau_{3}^{\text{II}}) \right\} \right],$$
 (5)

where

$$1/\tau_3^i = 1/\tau_1^i + 1/\tau_2^i \qquad (i = I, II)$$
 (6)

and

$$A = (9/80)(\gamma^4 \,\hbar^2 \,r^{-6})(3/2)\sin^4 \delta \,, \tag{7a}$$

$$B = (9/80)(\gamma^4 \hbar^2 r^{-6})(\sin^2 2\delta + \sin^4 \delta)$$

$$+(27/20) \gamma^4 \hbar^2 R^{-6}$$
, (7b)

$$C = (9/80)(\gamma^4 \hbar^2 r^{-6})(1/2)(8-3 \sin^4 \delta)$$
. (7c)

Here τ_1^i , τ_2^i (i=I, II), r, R, and δ stand for the reorientational correlation times of the CH₃ and tert-butyl groups in the i-th cation, the inter-proton distance in a CH₃ group, the distance between the centers of three protons in each CH₃ group, and the angle between the C-C and C-N bond axes, respectively. It is difficult, however, to analyse the observed T_1 values using (4)-(7) because of too many unknown parameters to be optimized. Thus, we assume that 1 H T_1 can be written conventionally by a sum of the three BPP

equations as

$$T_1^{-1} = C_a f(\tau_a) + C_b f(\tau_b) + C_c f(\tau_c), \tag{8}$$

where the first term, $C_a f(\tau_a)$, corresponds to the T_1 shoulder while $C_b f(\tau_b)$ and $C_c f(\tau_c)$ contribute to the asymmetric T_1 minimum on its high and low temperature side, respectively. A fitting calculation using (4) and (8) was successful as shown in Fig. 3 and its results are listed in Table 1. We obtained $C_a = 1.3 \times 10^9$, $C_b = 3.4 \times 10^9$, and $C_c = 5.7 \times 10^9 \text{ s}^{-2}$ as the optimum values for the motional constants, which are close to $(B/2) = 1.30 \times 10^9$, $(A+C)/2 = 3.81 \times 10^9$, and $(A+B+C)/2 = 5.11 \times 10^9 \text{ s}^{-2}$, respectively calculated from (7a)-(7c) using the evaluated most probable values, r = 1.797 Å, R = 3.593 Å, and $\delta = 70.73^{\circ}$. Since the presence of two kinds of cations has been revealed, the above result can be interpreted as follows: 1) the T_1 shoulder at ca. 270 K and the T_1 in the high temperature region of the asymmetric minimum are attributed to the C_3' reorientation of the tert-butyl group and the C₃ reorientation of the three CH₃ groups, respectively, in one of the two different cations, and 2) the reorientations of the CH₃ and tert-butyl groups in the other cation occur at almost the same temperature and contribute together to T_1 in the low temperature region of the minimum.

From the results of the partially deuterated analogs, the T_1 minimum in $(t-BA)_2SnCl_6$ is assigned to the motions of all CH_3 groups in the crystal and the tertbutyl group in one of the two cations, while the two T_1 shoulders observed at ca. 270 and 130 K are attrib-

uted to the tert-butyl group motion in the other cation and the NH_3^+ motion, respectively. For the fully protonated t-BA⁺ cation, T_1 is approximately expressed as

$$T_1^{-1} = (1/4) \{ T_1(NH_3^+) \}^{-1} + (3/4) \{ T_1(tert-butyl) \}^{-1},$$
(9)

where $T_1(\mathrm{NH}_3^+)$ and $T_1(\mathrm{tert}\text{-butyl})$ are given by (1) and (5), respectively. In Fig. 2, the calculated T_1 curves using (9) by substituting the parameters obtained for the partially deuterated analogs are shown. A satisfactory agreement between the experimental and calculated T_1 is obtained. The discrepancy in the high temperature region can be explained by the interaction between protons in the NH_3^+ and CH_3 groups.

In the present investigation we obtained quite small activation energies (9.9-10.0 kJ mol⁻¹) for the NH₃⁺ motion, comparable to 7.9-10.1 kJ mol⁻¹ for the same motion obtained in $(t-BA)_2$ TeX₆ (X = Cl, Br) [1]. This indicates that the cations in the present complex form very weak, if any, hydrogen bonds of N-H · · · Cl, as expected for the loosely packed cation in the crystal. Moreover, we found that the NH₃ motion occurs at lower temperatures than the CH₃ motion, namely, the activation energy for the NH₃ groups is smaller than for the CH₃ groups. This is the same result as obtained in $(t-BA)_2 TeX_6$ (X = Cl, Br), although the tin and tellurium complexes are not isomorphous. This suggests that the NH₃ group can rotate more easily than the CH₃ groups, if the cation is completely free or packed loosely in the crystal.

- H. Ishida, S. Inada, N. Hayama, D. Nakamura, and R. Ikeda, Ber. Bunsenges. Phys. Chem. 95, 866 (1991).
- [2] C. I. Ratcliffe and B. A. Dunell, J. Chem. Soc., Faraday Trans. 2, 73, 493 (1977).
- [3] R. Konieczka and Z. Pajak, J. Chem. Soc., Faraday Trans. 2, 77, 2041 (1981).
- [4] H. Ishida, S. Inada, N. Hayama, D. Nakamura, and R. Ikada, Z. Naturforsch, 46a, 265 (1991)
- Ikeda, Z. Naturforsch. 46a, 265 (1991).

 [5] H. Ishida and S. Kashino, Acta Cryst. C, in press (1992).

 [6] H. Ishida, T. Iwachido, N. Hayama, R. Ikeda, M.
- [6] H. Ishida, T. Iwachido, N. Hayama, R. Ikeda, M. Terashima, and D. Nakamura, Z. Naturforsch. 44a, 741 (1989).
- [7] Y. Kume, R. Ikeda, and D. Nakamura, J. Magn. Reson. 33, 331 (1979).
- [8] H. Ishida, T. Iwachido, N. Hayama, D. Nakamura, and R. Ikeda, Bull. Chem. Soc. Japan 64, 3613 (1991).
- [9] A. Abragam, The Principles of Nuclear Magnetism, Oxford University Press, London 1961.
- [10] M. B. Dunn and C. A. McDowell, Mol. Phys. 24, 969 (1972).
- [11] S. Albert, H. S. Gutowsky, and J. A. Ripmeester, J. Chem. Phys. 56, 3672 (1972).